PRACTICAL WIDE-BAND ANTENNA SYSTEMS

FOR MEDIUM AND SHORT-WAVE RECEPTION.

By Al Klase

ANTENNA SYSTEMS

1

MATERIALS

WIRE

Any wire will work.

#14 stranded, a la Radio Shack, is a good bet for permanent installation.

Insulation may help among tree branches.

INSULATORS

Not critical in receiving antennas.

Commercial: glass, plastic, or ceramic.

Homemade: plastic pipe etc.

MATERIALS (continued)

ROPE

Properly colored polyester rope is almost "forever."

3/16 inch is about right for most applications.

Hamfests are best source.

Parachute cord is OK.

White synthetic rope is attacked by sunlight.

ANTENNAS

3

INSTALLATION

TREES ARE YOUR BEST FRIEND

Try a slingshot with 1-2 oz. sinkers and a spinning type fishing rod. You'll probably need an intermediate size cord to raise the rope halyard.

A rope just pulled over a limb and tied off at the base of the tree works just fine.

Install a pulley and counter weight or screen door spring with trees that sway in the wind. A gallon jug of water make a good weight.

GROUNDS

- Place a ground rod at the entry point to the house to head off lightning. This may not turn out to be a good RF ground.
- The cold water pipe may be the best ground you're going to get, and is probably bonded to the electrical system.
- Parallel multiple grounds. Listen for change in signal to noise ratio as each is added.
- Don't get bogged down in a lot of hypothetical hogwash regarding "ground loops." They are mostly an audio problem.

ANTENNAS

5

LIGHTNING ARRESTORS

There ain't no such thing! (any more)

In Newspeak: Discharge Devices

Head off lightning at entry point:

Disconnect and ground antenna when not in use. (knife switch) Commercial devices: TV twin-lead units. Ham radio stuff. Spark gap or gas tube. *e.g.* vintage lightning arrestors. Grounding the shield of coax at entry point.

Prevent buildup of static:

Especially important if connecting to solid state equipment. Ground the antenna for DC. Balun, RF choke (approx. 2.5 mH) If nothing else: 100K resistor to ground.

ANTENNAS

CONNECTING TO THE SET

Insulated wire from entry point to radio

Simple low-cost solution.

Picks up noise.

OK for short runs.

Coaxial Cable

Eliminates noise pickup

Signal loss in long runs if not matched to antenna and set.

Coax with matching transformers

Best solution.

Splitters to feed multiple radios.

Also, allows use of TV cable accessories.

ANTENNAS

7

75 OHM COAXIAL CABLE

Readily available

Inexpensive, easy to install connectors

Two basic types: RG-58 and RG-6

Many useful cable TV accessories:

Switches: A-B, A-B-C, etc.

Wall outlets, feedthrus, grounding blocks

Patch cords, attenuators, adapters

Frequency sensitive devices that don't work below 10MHz:

Splitters

Amplifiers

ರ

FULL-BLOWN SYSTEM

TRANSFORMER CONSTRUCTION

4:1 CHOKE BALUN

- Improves impedance match between antenna and coax.
- Keeps noise on cable shield out of antenna-ground circuit.
- Can be used to couple coax to receivers.
- · Covers MF and HF frequency ranges.
- DC path to ground eliminates static build up.

BLN-73-202 FERRITE CORE

FROM AMIDON ASSOCIATES

T1 7 BIFILAR TURNS #26

T2 7 BIFILAR TURNS #26

ANTENNA SYSTEMS

11

BALUN APPLICATIONS

Antenna operated against earth cable isolated.

Antenna operated against cable shield.

BALANCED (DOUBLET) ANTENNA.

ANTENNA SYSTEMS

3dB SPLITTER/COMBINER

- Divides input power in half while maintaining 75 ohm impedances.
- Wide bandwidth: <100KHz to >30MHz
- Hybrid design provides >30dB isolation between outputs.
- Can also be used to combine two signals with no loss.

L1 4 TRIFILAR TURNS #26

BLN-73-202 FERRITE CORE FROM AMIDON ASSOCIATES

L2 5 BIFILAR TURNS #26

ANTENNA SYSTEMS

13

LOOP ANTENNA COUPLER

Connects 75 ohm coax to receivers with loop antenna

Cut from 1/4 in. plywood.

13 turns number 22 hook-up wire.

3/4 inch wood base (behind).

ANTENNA SYSTEMS

TESTING

- Building a good antenna system is an experimental proposition. Careful testing is essential.
- Arrange an A-B switch to compare your new antenna to the old "reference" antenna.
- It's usually best to work in daylight when atmospheric noise is lower and ground-wave signals are available. (minimum fading)
- Chose a marginal AM station and work for improved reception.
- A communications receiver with an S-meter is helpful but not essential.

ANTENNAS 15